Gwybodaeth Modiwlau

Module Identifier
MP26020
Module Title
Mathematical Physics
Academic Year
2016/2017
Co-ordinator
Semester
Semester 1
Mutually Exclusive
FG26020
Pre-Requisite
(MA10610 or MT10610); and (PH16210 or FG16210) or (MA11210 or MT11210).
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 22 x 1 Hour Lectures
Workshop 11 x 2 Hour Workshops
 

Assessment

Assessment Type Assessment length / details Proportion
Semester Exam 3 Hours   written examination  70%
Semester Assessment 2 TESTS  30%
Supplementary Exam 3 Hours   written examination  100%

Learning Outcomes

On successful completion of this module students should be able to:

Express common physical systems and relationships using the mathematical language of vectors, differential equations and Fourier theory



Use vectors, vector fields, vector algebra and different co-ordinate systems to solve physical problems in 3-dimensional space

Solve line and volume integrals. Apply the Stokes', Green's and divergence theorems

Apply different methods of solution to various types of differential equations

Recognise and solve second-order partial differential equations in various physical contexts

Describe and explain the concepts of Fourier analysis, convolution and correlation and apply Fourier analysis techniques to problems in physical systems

Aims

The module develops a mathematical approach to the modelling of physical systems. It is of fundamental importance for all honours degree schemes in Physics and is appropriate for many honours degree schemes in Mathematics.

Brief description

This module develops a variety of mathematical theories: vector analysis, differential equations and Fourier analysis. These are applied to the modelling of, and solution of problems in, a wide selection of physical situations;electrostatics, magnetism, gravitation, mechanics, thermo-dynamics, plasma physics, atmospherics physics and fluid mechanics.

Content

Vector analysis: scalar and vector triple products, polar co-ordinates, 3-D scalar and vector fields, gradient, divergence and curl of 3-D fields, vector operators, line integrals, surface integrals.Differential equations: general order ordinary differential equations, simultaneous differential equations, partial differential equations, eigenvalue problems.Fourier analysis: Fourier analysis of signals, complementary parameters (e.g. frequency and time), Fourier transforms.


Notes

This module is at CQFW Level 5