Module Information

Module Identifier
CSM6120
Module Title
Fundamentals of Intelligent Systems
Academic Year
2025/2026
Co-ordinator
Semester
Semester 1
Reading List
Other Staff

Course Delivery

 

Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment Essay:  topic in Intelligent Systems 2000 Words  30%
Semester Exam 3 Hours   Exam:  Exam on basic concepts of AI and machine learning  70%
Supplementary Assessment Resit Essay:  Submission of failed/late assignment submission  30%
Supplementary Exam 3 Hours   Resit Exam:  70%

Learning Outcomes

On successful completion of this module students should be able to:

Describe and use the basic principles of Artificial Intelligence and Machine Learning.

Be able to reflect on project needs.

Practically apply AI and ML principles to meet those needs.

Present the material they have learned in an informed, clear manner.

Demonstrate understanding and insight into the material that they are presenting.

Brief description

This module introduces the key ideas in Artificial Intelligence and ensures all students are at roughly the same level before moving on to the specialist modules.

Content

1. Introduction - 2 hours
General introduction to Artificial Intelligence (AI), including discussion of what AI is, its history, definitions, and philosophical debates on the issue (the Turing test and the Chinese room). Ethical issues.
2. Search -8 hours
Why search is important in AI and how to go about it. This includes both informed and uninformed strategies. Evolutionary search.
3. Knowledge Representation - 2 hours
Ways of representing knowledge in a computer-understandable way. Semantic networks, rules. Examples of the importance of KR.
4. Propositional and First-Order Logic - 4 hours
The backbone of knowledge representation.
5. Rule-based Systems - 2 hours
How can human expertise be automated? How to build an expert system - system concepts and architectures. Rule-based systems: design, operation, reasoning, backward and forward chaining. Knowledge acquisition.
6. Neural networks and subsymbolic learning - 2 hours
We can find solutions using search, but how can we remember solutions, learn from them and adapt them to new situations? This will cover perceptrons, single-layer and multi-layer networks.

Module Skills

Skills Type Skills details
Application of Number Inherent to subject
Communication Seminar
Improving own Learning and Performance Inherent to subject
Information Technology Inherent to subject
Personal Development and Career planning Encourages students to see roles in subject for career and personal development
Problem solving Inherent to subject
Research skills Essay
Subject Specific Skills Advanced Artificial Intelligence skills

Notes

This module is at CQFW Level 7