Module Information

Module Identifier
BR21820
Module Title
Chromosome Dynamics
Academic Year
2023/2024
Co-ordinator
Semester
Semester 2
Pre-Requisite
Other Staff

Course Delivery

 

Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment 1 Hours   60 minute written tests on practicals (2).  1 Awr  25%
Semester Assessment 60 minute written tests on practicals (1).  25%
Semester Exam 2 Hours   50%
Supplementary Assessment 1 Hours   60 minute written tests on practicals (2).  1 Awr  25%
Supplementary Assessment 60 minute written tests on practicals (1).  25%
Supplementary Exam 2 Hours   Exam  50%

Learning Outcomes

On successful completion of this module students should be able to:

1. Describe the structure, function and evolution of eukaryotic chromosomes, and identify the factors governing chromosome stability and driving karyotype diversity.

2. Outline the nature and effects on the phenotype of numerical and structural changes of chromosomes.

3. Discern how meiosis and recombination underpin genetic variation.

4. Construct, test statistically and interpret linkage maps.

Brief description

Chromosomes carry genes with great precision and fidelity between cell cycles, and from one generation to the next. This module explores how chromosomes have evolved to be proficient vehicles of inheritance, and how differences and changes in chromosome number and structure have important implications for speciation and the fitness of eukaryotic organisms. It also shows how chromosomes provide the environment for the expression and recombination of genes, and how chromosomes underpin sex determination and the evolution of breeding systems. Practical classes complement the lecture series, in which model organisms are used to demonstrate the principles and practice of genetic mapping.

Content

The course is divided into 4 interrelated sections:

1. Chromosome structure and evolution
Defining and comparing karyotypes by chromosome components. Drivers and models of chromosome evolution, sex determination and breeding systems, extrachromosomal inheritance and epigenetics.

2. Chromosome mutation
The nature of numerical and structural chromosome change and its relationship to fertility and aetiology of human genetic disorders.

3. Meiosis and Recombination
The cytology and molecular genetics of meiosis and recombination.

4. Practicals
Karyology, meiosis, recombination and linkage mapping in model organisms.

Module Skills

Skills Type Skills details
Application of Number Data are obtained and analysed statistically in the practical classes.
Communication Listening and questioning skills are honed in lectures and practical classes.
Improving own Learning and Performance Progress and performance is monitored through feedback on practical assessments and a module review session to prepare for the examination.
Information Technology Internet search engines are used for directed wider reading.
Personal Development and Career planning Discerning the central role of chromosomes in governing the phenotype is an important skill in terms of pursuing a career in clinical and biomedical science.
Problem solving Scientific method will be exercised by posing and testing hypotheses in the practical classes.
Research skills The practical classes will develop transferable lab skills in microscopy, microbiological techniques, and in following written protocols.
Subject Specific Skills Ability to discern the central role of the chromosome in the genetics and evolution of eukaryotes.
Team work The acquisition and analysis of class data in the practicals encourages an active role in group activities.

Notes

This module is at CQFW Level 5