Module Information

Cod y Modiwl
MT10610
Teitl y Modiwl
Calcwlws
Blwyddyn Academaidd
2019/2020
Cyd-gysylltydd y Modiwl
Semester
Semester 1
Cyd-Ofynion
Cyd-Ofynion
Elfennau Anghymharus
Rhagofynion
Mathemateg Safon Uwch neu gyfatebol
Staff Eraill sy'n Cyfrannu

Manylion y cyrsiau

Math o Ddysgu Manylion / Hyd Dysgu
Tiwtorial 4 x Tiwtorial 1 Awr
 

Dulliau Asesu

Math o Assessiad Manylion / Hyd Assessiad Cyfran
Arholiad Semester 2 Awr   Arholiad Ysgrifenedig  80%
Asesiad Semester Pedwar aseiniad. Cyfranogiad  20%
Arholiad Ailsefyll 2 Awr   Arholiad Ysgrifenedig  100%

Disgrifiad cryno

Gweler y modiwl Saesneg.

Cynnwys

1. TERFANNAU A DIDORIANT: Nodiant terfan. Rheolau ymdrin a therfannau. Theorem wasgu ar gyfer terfannau. Diffiniad o ddidoriant mewn pwynt yn nhermau terfannau. Didoriant swm, lluoswm, cyniferydd a chyfansawdd ffwythiannau. Theorem gwerth canolradd.
2. DIFFERU: Cyniferydd gwahaniaeth Fermat (f(x)-f(a))/(x-a). Diffiniad o ddeilliad f(x) mewn pwynt. Arwyddocad geometrig y deilliad. Differu ffwythiannau elfennol o egwyddorion sylfaenol. Didoriant ffwythiannau differadwy; enghreifftiau o ffwythiannau di-dor annifferadwy. Rheolau ar gyfer differu. Enghreifftiau o ddifferu, gan gynnwys differu logarithmig. Deilliadau trefn dau.
3. FFWYTHIANNAU GWRTHDRO: Diffiniad. Enghreifftiau trigonometrig a pholynomial. Differu ffwythiannau gwrthdro elfennol.
4. MACSIMA A MINIMA LLEOL, BRASLUNIO CROMLINIAU: Lleoli pwyntiau critigol ffwythiant. Defnyddio'r prawf deilliad cyntaf i ddarganfod y macsimau a’r minimau lleol. Pwyntiau ffurfdro. Graffiau o ffwythiannau cymarebol, asymptotau fertigol a llorweddol.
5. INTEGRU: Theorem sylfaenol calcwlws integrol. Priodweddau llinol integru. Integrynnau amhendant. Dulliau integru: integru trwy amnewid, integru fesul rhan. Diffiniad o log x fel integryn. Priodweddau'r ffwythiant log o briodweddau'r integryn. Y ffwythiant esbonyddol fel gwrthdro'r ffwythiant log. Y ffwythiannau hyperbolig. Integru ffwythiannau cymarebol, y defnydd o ffracsiynau rhannol.

Nod

Gweler y modiwl Saesneg


Nodau

Mae'r modiwl hwn yn cydymffurfio a FfCChC Lefel 4