Module Information
Course Delivery
Delivery Type | Delivery length / details |
---|---|
Lecture | 33 x 1 Hour Lectures |
Practical | 1 x 2 Hour Practical |
Assessment
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Assessment | Coursework (4 assignments) | 20% |
Semester Exam | 2 Hours (Written Examination) | 80% |
Supplementary Exam | 2 Hours (Written Examination) | 100% |
Learning Outcomes
On successful completion of this module students should be able to:
1. Explain the biological relevance of parameters in a mathematical model of a complex system.
2. Calculate the stability of the steady-state solutions to a mathematical model of a biological system.
3. Find travelling wave solutions of a differential equation.
4. Use a computer to explore the dynamics of a complex system described as a difference equation.
Aims
Mathematical Biology is an area of interest that is growing rapidly in popularity; with a little knowledge of biology, mathematicians are now able to develop appropriate models of biological phenomena which are also of mathematical interest in their own right. Mathematicians who are familiar with rigorous biological modelling have extremely attractive employment prospects in this and related areas such as medicine.
Brief description
This course aims to develop students' ability to identify the key parameters in a complex system and create and solve a comparatively simple model, the results of which can then be related back to the original system. Examples will include chaotic population models and waves in reaction-diffusion systems.
Content
Two species population models; Lotka Volterra; Predator Prey.
Spread of Epidemics.
Reaction Diffusion Equations; Propagating Wave Solutions; Travelling Fronts; Spatial Pattern Formation; Animal Coat Patterns.
Module Skills
Skills Type | Skills details |
---|---|
Application of Number | Necessary throughout. |
Communication | Written answers to exercises must be clear and well-structured. Good listening skills are essential to successful progress in this course. |
Improving own Learning and Performance | Students will be expected to develop their own approach to time-management in their attitude to the completion of work on time, and in doing the necessary preparation between lectures. |
Information Technology | Students will be set exercises involving the use of computer and library facilities. |
Personal Development and Career planning | Completion of tasks (problem sheets) to set deadlines will aid personal development. The course will give clear indications of the range of possible employment opportunities available to students who successfully complete it. |
Problem solving | In addition to problem classes, further exercises will be set and marked. These will involve the identification and derivation of appropriate solutions. |
Research skills | Computer classes will allow students to explore the parameter space of a dynamical system, and draw conclusions about determining solutions relevant to the physical system. |
Notes
This module is at CQFW Level 6