Module Information
Course Delivery
Delivery Type | Delivery length / details |
---|---|
Lecture | 22 x 1 Hour Lectures |
Assessment
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours | 70% |
Semester Assessment | Problem sheets | 20% |
Semester Assessment | Blackboard quizzes | 10% |
Supplementary Exam | 2 Hours | 100% |
Learning Outcomes
On successful completion of this module students should be able to:
1. Classify the states of single and multi-electron atoms.
2. Utilise vector addition to determine angular momentum using LS or jj coupling schemes.
3. Apply relevant selection rules to predict allowed transitions in atoms.
4. Calculate electron energy level shifts in a magnetic field.
5. Evaluate rotational/vibrational spectra of polyatomic molecules, Zeeman spectra of atoms and electron spin resonance spectra of simple molecules.
6. Assess molecular properties and predict spectral features associated with them.
Aims
Atoms and molecules are the basic building blocks of all matter. Therefore, an understanding of the structure of these entities and their interactions is crucial to a complete understanding of matter. This module will use the quantum theory to make predictions about atomic and molecular states and look at the experimental methods by which such evidence can be obtained which verifies these predictions. A strong part of the course is in providing the means to interpret simple spectra of atoms and molecules.
Brief description
This module will discuss the structure of atoms and molecules, discussing theoretical models developed from quantum theory and their verification using the tools of a variety of spectroscopic methods including Raman and infra-red spectroscopy; Zeeman spectroscopy; electron spin resonance and nuclear magnetic resonance.
Content
Spectroscopy of the hydrogen atom - gross, fine, and hyperfine structure. Orbital and spin angular momentum in hydrogen. Spin-orbit coupling. Many electron atoms - indistinguishability and the Pauli Exclusion Principle. LS and jj-coupling. Hund's rules.
Optical selection rules in atoms. Alkali and rare earth spectra. Helium and configuration interaction. Zeeman effect - space quantisation. The Spin Hamiltonian. Hyperfine structure - nuclear spin. Rydberg states.
Born-Oppenheimer approximation. Rotational, vibrational and electronic spectra of diatomic and polyatomic molecules.
SPECTROSCOPIC INSTRUMENTATION AND METHODOLOGY:
Microwave and Infra-red absoption spectroscopy; Raman spectroscopy; Zeeman spectroscopy; electron spin resonance; nuclear magnetic resonance.
Module Skills
Skills Type | Skills details |
---|---|
Application of Number | All questions set in example sheets and formal exams have numerical problems. |
Communication | Written communication is developed via lecture assignments. |
Improving own Learning and Performance | Assessments are used in order that students might reflect on their progress during the module. |
Information Technology | Students will be expected to research topics within the module via the internet. |
Personal Development and Career planning | The module will highlight the latest research in this fields and hence will develop, to an extent, career development. |
Problem solving | Problem solving is a key skill in physics and this wil be tested via lecture problem sheets and in formal examination at the end of the module. |
Research skills | Students will be set problems in lectures which will entail research in library and over the internet. |
Notes
This module is at CQFW Level 6