ENTRANCE EXAMINATION FEBRUARY 2023

MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a single PDF file. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.
- Statistical tables are not required.

Section A

1. Simplify the following expressions as far as possible, showing your working clearly.
(a) $1+\sqrt{(1-a)^{2}}$ assuming $a>1$;
[2 marks]
(b) $\frac{\sqrt{40}}{\frac{5}{3-\sqrt{8}}-15}$;
[4 marks]
(c) $4 \log _{3} 15+2 \log _{3} 4-\log _{3} 10000$.
[5 marks]
2. Solve the following equations for x :
(a) $243^{x}=9$;
(b) $9^{x}-10 \times 3^{x}+9=0$.
3. Solve the equation

$$
(15 \cos \theta-7 \tan \theta) \cos \theta=13
$$

for values of θ between 0° and 180°.
[7 marks]
4. In the binomial expansion of $(1+a x)^{8}$ in powers of x, the coefficient of x^{5} is equal to $-\frac{56}{243}$. Find the value of a.
[4 marks]
5. Find the range of values of x for which the function $f(x)=x^{3}-3 x^{2}+2 x-1$ is increasing.
[7 marks]
6. Consider the points $A(1,2)$ and $B(-2,3)$ in the $x y$-plane. Find the equation of the line perpendicular to $A B$ and passing through the midpoint of $A B$. [5 marks]
7. In the following statements A and B, x and y are real numbers.

A If $(x-y)^{2}=(x+y)^{2}$, then $x=y=0$.
B If $(x-y)^{2}=-(x+y)^{2}$, then $x=y=0$.
In both cases, identify whether the statement is true or false. Justify your answer by giving a proof (if true), or a counterexample (if false).
[5 marks]
8. Consider the function $f(x)=6 x^{2}-7 x+2$ (defined for all real x).
(a) Determine the function $F(x)$ for which $F^{\prime}(x)=f(x)$ and $F(0)=1$. [3 marks]
(b) Find the equation of the line in the $x y$-plane tangent to the curve $y=F(x)$ at $x=0$.
[4 marks]
9. Points A and B have position vectors $\mathbf{a}=\mathbf{i}-5 \mathbf{j}$ and $\mathbf{b}=-3 \mathbf{i}+\mathbf{j}$.
(a) Find the vector $\mathbf{A B}$ (in terms of \mathbf{i} and \mathbf{j}), and determine whether it is parallel to the vector $2 \mathbf{i}-3 \mathbf{j}$, explaining your reason.
(b) Point C divides the line $A B$ such that $A C: C B=2: 1$. Find, in terms of \mathbf{i} and \mathbf{j}, the position vector of C.

Section B

10. Circle C_{1} has equation

$$
x^{2}+y^{2}+4(y-x)-17=0 .
$$

Circle C_{2} is centred at point $(-4,6)$ and has radius 5 .
(a) Find the radius and the coordinates of the centre of C_{1}.
(b) Find the points at which C_{2} intersects the line $y=x+9$.
(c) Show that C_{1} and C_{2} touch at exactly one point P, and find
(i) the coordinates of P;
[4 marks]
(ii) the equation of the line tangent to the circles at P.
11. Two weights A and B, of masses $m_{A}=3 \mathrm{~kg}$ and $m_{B}=6 \mathrm{~kg}$, are connected to each other by a vertical uniform $\operatorname{rod} R$ of mass m_{R}, as shown in the figure. An upward force $F=100 \mathrm{~N}$ is exerted on A, and the whole system falls downwards with acceleration $a=2 \mathrm{~ms}^{-2}$.
(a) Sketch free-body diagrams for the following objects:
(i) The system consisting of A, B, and R; [1 mark]
(ii) The weight A; [1 mark]
(iii) The weight B. [1 mark]

In each case, indicate all the forces acting on the object. (Numerical magnitudes are not required at this point.)
(b) Using the diagrams in part (a), find (to 2dp)
(i) the mass m_{R};
[4 marks]
(ii) the tension force at the top of R;
[4 marks]
(iii) the tension force at the bottom of R. [3 marks]

Make sure to show sufficient working, referring to the relevant law of motion. Acceleration due to gravity should be taken as $g=9.81 \mathrm{~ms}^{-2}$.
(c) Suppose that the length of R is 30 cm . Point P lies on R at distance 10 cm from the bottom.

(i) Sketch a free-body diagram for the part of the rod below P.
(ii) Find (to 2dp) the tension force at P. [5 marks]
12. (a) In a single round of a certain game it is possible to score $1,2,3,4$, or 5 points. The probabilities for these scores are given in the following table, where a and b are constants:

score	1	2	3	4	5
probability	0.2	a	0.1	b	0.15

Furthermore, the probability of scoring less than 4 points is equal to the probability of scoring at least 4 points.
(i) Determine the values of a and b.
(ii) Each round of the game is independent of any previous rounds. Jemima plays two rounds and adds the two scores together to get a total. Find the probability that her total is greater than 8 .
(b) In a biological experiment, the activity of a particular enzyme (in enzyme units, U), was measured at a range of pH values. The graph of enzyme activity against pH is shown below.

(i) Describe the relationship between pH and enzyme activity. [3 marks]
(ii) The equation of the regression line is

$$
\text { Enzyme activity }=71.5-8.85 \mathrm{pH}
$$

What do each of the numbers in this equation correspond to?
(iii) What is the predicted enzyme activity at a pH of 6.2 ?
(iv) What is the problem with using this equation to predict the enzyme activity at a pH of 9 ? What does this tell you about the relationship between enzyme activity and pH over the range 4 to 9 ?

