FURTHER MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a single PDF file. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.

Information and relevant formulas

- Powers of complex numbers: $(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))$.
- Statistical tables will be provided. Note that the tables refer to the right-hand tails of the distributions, that is, probabilities of the form $p=\mathbb{P}(X \geq x)$ where X is a random variable and x an upper percentage point of its distribution.
- Formulas related to standard distributions (e.g. for probability, mean, and variance) can be found on the back page of the statistical tables.

Section A

1. Simplify the following expressions as far as possible, showing your workings.
(a) $\frac{4 i+3}{(3-i)^{2}}$;
(b) $|2(\mathbf{i}-5 \mathbf{j}+\mathbf{k})+(\mathbf{i}+2 \mathbf{j}-\mathbf{k})+(\mathbf{i}+5 \mathbf{j}-\mathbf{k})|$;
(c) $\left(\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{-1}-\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)^{-1}\right)^{-1}$.
2. Solve the equation $5 z-4 \bar{z}=3 \bar{z}+8-i+7 z$, for the complex number z. (Here \bar{z} is the complex conjugate of z.)
3. Determine the value of a such that the matrix $\left(\begin{array}{cc}7 & -1 \\ 4 & a\end{array}\right)$ has no inverse. [3 marks]
4. Consider the complex number $z=\frac{1}{10}(3 i+4)$.
(a) Express z in the form $r(\cos \theta+i \sin \theta)$ where $r>0$ and $-\pi \leq \theta \leq \pi$ (in radians to 3dp).
(b) Represent z and z^{2} as points in an Argand diagram.
(c) Find the smallest positive integer n for which the imaginary part of z^{n} is negative, explaining your reasoning.
[4 marks]
(d) Find the smallest positive integer n for which $\left|z^{n}\right|<10^{-4}$, explaining your reasoning.
[3 marks]
5. The complex number z satisfying $2|z-2|=|3 z-1+i|$ is represented by the point $P(x, y)$ in an Argand diagram. Find the equation of the locus of P in terms of x and y, and interpret it geometrically.
[8 marks]
6. Consider the polynomial $f(x)=5 x^{3}+13 x^{2}+9 x+c$, where c is a constant.
(a) Determine the value of c such that $f\left(\frac{2}{5}\right)=0$.
[2 marks]
(b) For the value of c found in (a), find all the roots of the equation $f(x)=0$, explaining your method for each root.
7. Prove by mathematical induction that

$$
\left(\begin{array}{cc}
3 & -2 \\
-2 & 3
\end{array}\right)^{n}=\frac{1}{2}\left(\begin{array}{cc}
1+5^{n} & 1-5^{n} \\
1-5^{n} & 1+5^{n}
\end{array}\right)
$$

for all positive integers n.

Section B

8. Plane Π has equation $x+2 y+3 z=6$. Line L_{1} passes through point $A(2,3,4)$, is perpendicular to Π, and intersects Π at point B. Furthermore, point C has coordinates ($2,2,0$), and line L_{2} has vector equation $\mathbf{r}=3 \mathbf{j}+\lambda(\mathbf{j}-2 \mathbf{i})$.
(a) Write down the equation of L_{1} in the Cartesian form.
(b) Find the coordinates of B.
(c) Show that (i) C lies on L_{2}, and (ii) L_{2} lies on Π.
(d) Find the angles and the lengths of the sides of the triangle $A B C$. [9 marks]
9. The position vector \mathbf{x} (metres) at time t seconds of an object of mass M is

$$
\mathbf{x}=\sin (3 t) \mathbf{i}+\cos (3 t) \mathbf{j}+e^{-2 t} \mathbf{k}
$$

The initial kinetic energy of the object (at $t=0$) is 13 J .
(a) Find (to 2dp) the time at which the object passes through the plane $z=0.5$, and state the coordinates of the crossing point (to 2 dp).
(b) Describe (in a few words) the nature of the motion of the object for large values of t, justifying your reasoning.
[3 marks]
(c) Find expressions for the velocity and acceleration vectors $\mathbf{v}\left(\mathrm{ms}^{-1}\right)$ and \mathbf{a} $\left(\mathrm{ms}^{-2}\right)$ of the object at time t seconds.
[4 marks]
(d) Calculate the mass M, and hence find the kinetic energy of the object at time t seconds.
[5 marks]
(e) Find, in vector form, the force acting on the object at time t seconds. [2 marks]
(f) Calculate (to 2dp) the work done by the force acting on the object during the first second (i.e. from $t=0$ to $t=1$ second).
10. (a) At a particular point on a cycle path, passing cyclists are counted during 10minute observation intervals. For each interval, the number of passing cyclists can be modelled by a Poisson distribution.
(i) Based on past records, the average number of cyclists passing in 10 minutes is 11 . Find (to 4 dp) the probability that exactly 3 cyclists pass the point in a 10 -minute interval.
(ii) Given the past average in (i), find (to 4 dp) the probability that at least 14 cyclists pass in a 10 -minute interval.
[2 marks]
(iii) In order to boost the usage of the cycle path, some improvement work was done. Let p be the probability that at least 14 cyclist pass the point in a 10 -minute interval, after the improvement. The passes were counted in five distinct 10 -minute intervals; X is the number of those intervals in which at least 14 cyclists pass. The result was $X=4$.
Using X as your test statistic, carry out a hypothesis test to assess evidence that p exceeds the past value found in (ii). State clearly the hypotheses, and the distribution of X assuming the null hypothesis. Calculate the p-value and state your conclusion using a 1% significance level. [8 marks]
(b) In a psychology experiment, researchers are interested in establishing whether rats show preferences for particular routes through a maze. In the experiment, 100 rats were allowed to choose a route through the maze. The numbers of rats taking each of the four possible routes are shown in the table below:

Route	1	2	3	4
Number of rats	23	22	30	25

Carry out a χ^{2} test at the 10% significance level to establish whether there is evidence of a preference for particular routes. Make sure to state the null hypothesis, the degree of freedom, the critical value for this test, and the formula for the statistic you calculate.

