## ENTRANCE EXAMINATION MAY 2021

## MATHEMATICS

## Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a single PDF file. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.
- Statistical tables will be provided. Note that the tables refer to the right-hand tails of the distributions, that is, probabilities of the form $p=\mathbb{P}(X \geq x)$ where $X$ is a random variable and $x$ an upper percentage point of its distribution.


## Section A

1. Simplify the following expressions as far as possible, showing your working clearly.
(a) $\frac{1}{1-\frac{3}{3+x}}-\frac{3}{x}$
[3 marks]
(b) $\frac{\frac{4}{\sqrt{5}}+5 \sqrt{2}}{2 \sqrt{5}-\sqrt{2}}-3 \sqrt{\frac{2}{5}}$
[5 marks]
(c) $\log _{2} 3+\log _{2} 14-\log _{2} 21$
[4 marks]
2. Absorption of alpha-particles by solid material is modelled as follows: the number of particles passing through a layer of thickness $d \mathrm{~cm}$ is $N=A e^{-\mu d}$ where $A$ and $\mu$ are constants. (The particles not passing through are absorbed.)
(a) Explain the meaning of the constant $A$ in this context.
[1 mark]
(b) A 2 cm layer of a material was found to absorb $40 \%$ of the particles. Find the value of $\mu$ for this material, to four decimal places.
[4 marks]
(c) How thick should the layer in (b) be to absorb $95 \%$ of the particles?[3 marks]
3. Solve the equation

$$
12(\cos \theta+1) \cos \theta+5 \sin ^{2} \theta=0
$$

for values of $\theta$ between $0^{\circ}$ and $360^{\circ}$.
[6 marks]
4. In the binomial expansion of $(a-3 x)^{9}$ in powers of $x$, the coefficient of $x^{5}$ is equal to -378 . Find the value of $a$. [4 marks]
5. A cubic polynomial is given by $f(x)=(2 x-a)\left(8 x^{2}-2 x-3\right)$, where $a$ is a constant. The curve $y=f^{\prime}(x)$ intersects the $y$-axis at the point $(0,-1)$.
(a) Find the value of $a$.
[4 marks]
(b) The curve $y=f(x)$ intersects the $x$-axis at three points. Find the $x$ coordinates of these points.
[4 marks]
(c) The curve $y=f^{\prime}(x)$ intersects the line $y=-1$ at two points. Find the $x$-coordinates of these points. [3 marks]
(d) Find the area enclosed by the curve $y=f^{\prime}(x)$ and the line $y=-1$. [4 marks]
6. (a) Given that $y=\frac{4}{x}+\frac{1}{5} x^{\frac{5}{2}}+x$, find the value of $\frac{d y}{d x}$ at $x=2$. [3 marks]
(b) Find the indefinite integral $\int\left(4 x^{\frac{1}{3}}-3 x^{-\frac{2}{5}}\right) d x$.
[2 marks]
7. Vectors $\mathbf{u}$ and $\mathbf{v}$ are defined by $\mathbf{u}=2 \mathbf{i}-\mathbf{j}$ and $\mathbf{v}=\mathbf{i}+2 \mathbf{j}$.
(a) Find, in terms of $\mathbf{i}$ and $\mathbf{j}$, the vector $\mathbf{v}-2 \mathbf{u}$, and calculate $|\mathbf{v}-2 \mathbf{u}|$. [3 marks]
(b) Determine the range of values for $\mu$ such that $\mu|\mathbf{v}-2 \mathbf{u}|<|\mathbf{v}|-2|\mathbf{u}|$. [3 marks]
(c) Write the vector $a \mathbf{u}+b \mathbf{v}$ in terms of $\mathbf{i}$ and $\mathbf{j}$, and determine the values of $a$ and $b$ such that $a \mathbf{u}+b \mathbf{v}=\mathbf{i}+\mathbf{j}$.
[4 marks]

## Section B

8. Circle $C$ on the $x y$-plane has centre $A$ and satisfies the equation

$$
x^{2}+y^{2}+k^{2}=3+2(x+k y),
$$

where $k$ is a constant. The origin $O$ lies on $C$, and the line $L$ tangent to $C$ at $O$ has positive slope.
(a) Determine (i) the radius of $C$ (ii) the value of $k$, (iii) the coordinates of $A$, and (iv) the equation of $L$. [9 marks]
(b) The circle $C$ intersects the $x$-axis also at a point $P$ different from $O$. Find the $x$-coordinate of $P$.
(c) The line tangent to $C$ at $P$ intersects $L$ at a point $D$. Find the coordinates of D.
(d) What percentage of the area of the triangle $O D P$ lies inside the circle $C$ ? [5 marks]
9. Two masses weighing 6 kg and 5 kg are connected to each other by a vertical uniform rod weighing 4 kg , as shown in the diagram. An upward force of 200 N is applied on the 6 kg mass.
(a) For each of the three objects ( 6 kg mass, 4 kg rod, 5 kg mass), sketch a diagram showing all the forces acting on the object.
(b) Find the acceleration of the system. Acceleration due to gravity should be taken as $9.81 \mathrm{~ms}^{-2}$. [3 marks]
(c) Find the tension force at the top of the rod. [4 marks]
(d) Find the tension force at the midpoint of the rod. [5 marks]

10. (a) In a factory producing lengths of wire, faults occur in the wire at a mean rate of 0.4 per 1000 m . A Poisson distribution is used to model the number of faults in a particular length of wire.
(i) Find the probability of two or more faults in 1000 m of wire. [2 marks]
(ii) Find the probability of three or fewer faults in 8000 m of wire. [3 marks]
(iii) For what length of wire (to the nearest metre) is the probability of zero faults equal to 0.3 ?
(iv) A new wire manufacturing procedure is tested in the factory. After the introduction of the new procedure, 2 faults are observed in a particular 10000 m length of wire.
Stating your hypotheses clearly, and explaining any notation you use, test at the $5 \%$ level whether there is any evidence that the new manufacturing procedure has reduced the rate of faults.
[5 marks]
(b) In an economic survey of 15 households, the following graph was produced of expenditure (in thousands of pounds) against income (in thousands of pounds):


The regression equation is

$$
y=1.04+0.57 x
$$

where $y$ is expenditure and $x$ is income.
(i) Describe the relationship between income and expenditure. [2 marks]
(ii) Interpret the gradient and intercept terms in this context. [2 marks]
(iii) Calculate the predicted expenditure for a household with an income of $£ 150000$. Explain why this estimate should be treated with caution.

