ENTRANCE EXAMINATION MAY 2021

FURTHER MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a single PDF file. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.
- Statistical tables are not required.

Information

- 2-D rotations and reflections are represented by matrices as follows.

Anticlockwise rotation through angle ϕ about the origin : $\quad\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$
Reflection in the line $y=(\tan \phi) x$:

$$
\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
$$

Section A

1. Simplify the following expressions as far as possible, showing your workings.
(a) $\frac{2}{i} \frac{2 i+3}{1-i}+i$
(b) $(3 \mathbf{i}+4 \mathbf{k}) \cdot(-\mathbf{i}+5 \mathbf{j}+\mathbf{k})$
(c) $\left(\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right)^{-1}\binom{1}{2}+2\binom{3}{1}$
2. The complex number z satisfying $3|z-1+i|=2|z+i|$ is represented by the point $P(x, y)$ in an Argand diagram. Show that the locus of P is a circle, and find its radius and centre.
3. Consider the cubic equation $2 x^{3}-3 x^{2}+6 x+65=0$.
(a) Show that $2-3 i$ is a root of the equation.
(b) Find the other two roots of the equation, explaining your method. [4 marks]
4. (a) (i) Differentiate $x^{-1} \sin x$ and $x^{-1} \cos x$ with respect to x. (ii) Hence calculate $\int_{\pi / 2}^{\pi}\left(\frac{3+x}{x^{2}} \cos x-\frac{1-3 x}{x^{2}} \sin x\right) d x$, showing all workings.
(b) Show that $\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \frac{1+x}{1-x}+C($ when $-1<x<1)$.
5. Prove by mathematical induction that

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)^{n}=\frac{1}{2}\left(\begin{array}{ll}
3^{n}+1 & 3^{n}-1 \\
3^{n}-1 & 3^{n}+1
\end{array}\right)
$$

for all positive integers n.
6. The plane Π contains the origin and is perpendicular to the vector $\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. The line L passes through the points $A(1,1,1)$ and $B(1,-1,-1)$.
(a) Write down the equation of the plane Π in Cartesian form.
(b) Show that the point $(1,1,-1)$ lies in Π.
(c) Find (i) the vector $\mathbf{A B}$, and (ii) the vector equation of the line L. [3 marks]
(d) Find the coordinates of the point of intersection of L and Π.
7. Consider the following transformations in the plane:
R_{1} is the anticlockwise rotation by $\frac{\pi}{4}$ radians about the origin. R_{2} is the reflection in the line $y+\sqrt{3} x=0$.
(a) Find the 2×2-matrices representing R_{1} and R_{2}. Simplify the answer using exact values of sines and cosines.
(b) The transformation T consists of R_{1} followed by R_{2} followed by the inverse of R_{1}. Find the matrix representing T.

Section B

8. Consider the function $f(x)=2 a(3-2 x) x^{2}+(3 x-4) x^{3}$, where a is a constant such that $0<a<1$.
(a) Show that $(0,0),\left(a, a^{3}(2-a)\right)$ and $(1,2 a-1)$ are (all) the stationary points of the curve $y=f(x)$.
[4 marks]
(b) Determine the nature of each stationary point. Make sure to indicate where you use the condition $0<a<1$ in your solution.
[4 marks]
(c) Write down (in terms of a) the greatest value of the function $f(x)$ in the interval $0 \leq x \leq 1$. Justify your answer.
(d) Assuming $\frac{1}{2} \leq a<1$, explain why $f(x) \geq 0$ for all $0 \leq x \leq 1$. [1 mark]
(e) Assume now $0<a<\frac{1}{2}$. How many roots does the equation $f(x)=0$ have in the interval $0 \leq x \leq 1$? Justify your answer carefully.
[5 marks]
(f) Consider the following statements A and B, where $0 \leq x \leq 1$ and $0<a<1$:

A If $\frac{1}{2} \leq a<1$ and $f(x)=0$, then $x=0$.
B If $0<x \leq 1$ and $f(x)=0$, then $0<a<\frac{1}{2}$.
In both cases, identify whether the statement is true or false. Justify your answer by giving a proof (if true), or a counterexample (if false). [4 marks]
9. A ball of mass $m \mathrm{~kg}$ is dropped from the roof of a tall building (with zero initial velocity). As the ball falls, the air exerts on it a resistive force with magnitude $k v^{2} \mathrm{~N}$, where k is a constant and $v \mathrm{~ms}^{-1}$ is the velocity of the ball at time t.
(a) In a diagram, show the direction of motion and all the forces acting on the ball.
[2 marks]
(b) Write down the equation of motion of the ball in terms of the velocity v, the acceleration a, and the constants g, m, k.
(c) Explain briefly why the acceleration decreases as the ball falls.
(d) The limit of zero acceleration defines the terminal speed v_{T}. Using the equation of motion, show that $v_{T}=\sqrt{m g / k}$.
[2 marks]
(e) Show that the equation of motion can be written as

$$
\frac{d v}{d t}=g\left(1-\left(v / v_{T}\right)^{2}\right)
$$

[3 marks]
(f) Using the integral formula in question 4(b), solve the differential equation in (e) to find an expression for $v=v(t)$ as a function of time t.
(g) Using the expression you found in (f), find the limit of $v(t)$ as $t \rightarrow \infty$, and interpret the result in this context.
[2 marks]
10. A random variable, X, has the following probability distribution:

x	$\mathrm{P}(X=x)$
0	p
1	$2 p$
2	q
3	$2 q$
4	0.15
5	0.1

In addition, $\mathrm{E}(X)=2.5$.
(a) Write down two equations that p and q must satisfy, and hence find the values of p and q.
(b) Find $\operatorname{Var}(X)$.

Adrian and Jemima play a game. A value, X, is randomly selected from the distribution above. Adrian's score is given by the random variable $A=X$, and Jemima's score is given by the random variable $J=5-X$.
(c) Find $\mathrm{E}(J)$.

Adrian and Jemima work out their scores and whoever has the higher score is the winner.
(d) What is the probability that Adrian wins?
(e) What is the probability that Jemima wins?
[1 mark]
(f) A third player, Caroline, joins the game and her score is the random variable $C=X^{2}+1$.
(i) Explain clearly why Caroline will always beat Adrian.
(ii) Calculate the probability that Jemima beats Caroline.

