Module Information
Course Delivery
Assessment
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Assessment | Bioinformatics Workshop Coursework based ion the analysis of transcriptomic data from cancer patients. The data will be analysed in R and the submission will include a poster 2000 Words | 50% |
Semester Exam | 2 Hours Semester Exam | 50% |
Supplementary Assessment | Supplementary Bioinformatics Workshop Coursework based ion the analysis of transcriptomic data from cancer patients. The data will be analysed in R and the submission will include a poster 2000 Words | 50% |
Supplementary Exam | 2 Hours Supplementary Exam | 50% |
Learning Outcomes
On successful completion of this module students should be able to:
Use genomics and related databases to analyse gene and genome inter-relationships.
Independently demonstrate retained knowledge of the basic technological principles of transcriptome, proteome and metabolome analyses.
Show familiarity with a range of computational methods being used to interpret functional genomics data.
Appreciate current research strategies for gene discovery and determining gene function (functional genomics) and biological data analysis and interpretation (bioinformatics).
Demonstrate skills and knowledge of the concepts underlying database access, sequence analysis, protein classification and functional assignment.
Brief description
1) what are bioinformatics databases;
2) guide student on how to make effective database queries and retrieve data;
3) using databases to inform proteomic and metabolomic analyses.
4) introduction to coding; focusing on R statistical language.
A considerable component of self-learning will be expected; guided by internet resource such as R studio https://www.rstudio.com/home/ and Software Carpentry Foundation http://swcarpentry.github.io/r-novice-inflammation/ and
Content
This will be followed by sections considering different types of big data being generated which may be classified as genomics and functional genomes.
Genomic data sets will focus on the human genome and consider how this is being exploited to understand key traits, most especially disease. A particular focus will be on the importance of epigenetic changes in influencing cellular function and disease (3 lectures).
Functional genomic approaches arose out of the need to identify the function of previously uncharacterized DNA sequence detected in genomes. These approaches used gene and protein expression and metabolite on a global scale involving high-throughput methods to provide detailed knowledge of how cells and organisms function. In this module, different functional genomic levels will be separately considered by members of staff who are experts in each.
Thus, transcriptomics approaches to measure gene expression, often using next generation sequencing approaches will be discussed. Other sections will consider the large-scale analyses of proteins (proteomics) and metabolites (metabolomics). Both sections will involve students becoming familiar with Mass Spectroscopy, Nuclear Magnetic Resonance (NMR). (3 lectures for each topic). An additional three lectures will feature case studies from researchers at Aberyswyth University.
A central core of the module will be to introduce students to coding-based computational approaches to analyze genomic and functional genomic data. A crucial component will be to improve student’s knowledge of database organization, effective database queries and data retrieval.
These aspects will be developed in eight tutorial exercises in computer rooms and tested in three computer-based workshops. The first will extract and visualize transcriptomic data but the following will introduce / develop the students coding skills.
R is a programming language for statistical analyses and graphics. It is widely used by biologists and the students will further analyze their transcriptomic data using R in a practical workshop. They will become proficient in the use of R in univariate and multivariate analyses and the appropriate visualization of the results.
A considerable component of self-learning will be expected; guided by internet resource such as R studio https://www.rstudio.com/home/ and Software Carpentry Foundation http://swcarpentry.github.io/r-novice-inflammation/
Module Skills
Skills Type | Skills details |
---|---|
Application of Number | Students will have opportunity to collect and interpret data in practical classes with respect to quality and quantity. This will include the Application of statistically-based web tools for analysis of ‘omic data to interpret, derive hypotheses and criticize. Feedback on this will be provided with the returned assignment. |
Communication | Students will develop effective listening skills for the lectures. Students will develop effective written communication skills in practical class write-ups. Feedback on this will be provided with returned assignment. |
Improving own Learning and Performance | Although not formally assessed, the student's ability to devise and monitor time management, learning and performance skills will be developed throughout module via attending lectures and practical classes. |
Information Technology | Students will develop skills in accessing the web for information sources and free software for functional genomic analyses and data display. |
Problem solving | Students will develop skills in lectures. Practicals will be designed to allow students to gain experience in extracting and interpreting data. Feedback will be provided with the returned assignment. |
Research skills | Practical classes will develop skills in the extractions and analysis of data from web-accessible databases and the critical evaluation of data. Feedback will be provided with returned assignments. |
Subject Specific Skills | Accessing, assimilating and storing information via remote computer servers. |
Notes
This module is at CQFW Level 6